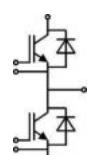


SEMITRANS® 3

Trench IGBT Modules

SKM 300GB066D

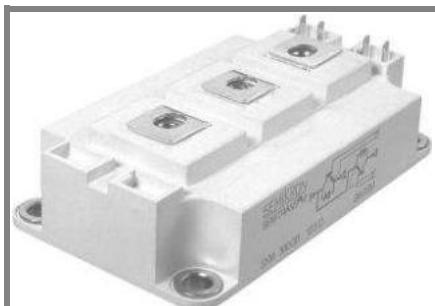
Features


- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_C$

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Remarks


- Case temperature limited to $T_c = 125^\circ\text{C}$ max, recommended $T_{op} = -40 \dots +150^\circ\text{C}$
- Product reliability results are valid for $T_j \leq 150^\circ\text{C}$
- Short circuit data: $t_p \leq 6 \text{ s}$; $V_{GE} \leq 15\text{V}$; $T_j = 150^\circ\text{C}$; $V_{cc} \leq 360\text{V}$, use of soft R_G necessary!
- Take care of over-voltage caused by stray inductances

GB

Absolute Maximum Ratings		$T_{case} = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	600		V
I_C	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	390	A	
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$	300	A	
V_{GES}		± 20	V	
t_{psc}	$V_{CC} = 360\text{V}$; $V_{GE} \leq 15\text{V}$; $T_j = 150^\circ\text{C}$ $V_{CES} < 600\text{V}$	6	s	
Inverse Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	350	A	
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	250	A	
I_{FSM}	$t_p = 10 \text{ ms; sin.}$ $T_j = 175^\circ\text{C}$	600	A	
Module				
$I_{t(RMS)}$		500	A	
T_{vj}		- 40 ... + 175	$^\circ\text{C}$	
T_{stg}		- 40 ... + 125	$^\circ\text{C}$	
V_{isol}	AC, 1 min.	4000	V	

Characteristics		$T_{case} = 25^\circ\text{C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4,8 \text{ mA}$	5	5,8	6,5	V
I_{CES}	$V_{GE} = 0 \text{ V}$, $V_{CE} = V_{CES}$ $T_j = 25^\circ\text{C}$	0,15	0,45		mA
V_{CEO}	$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	0,9	1		V
r_{CE}	$V_{GE} = 15 \text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	0,85	0,9		$\text{m}\Omega$
$V_{CE(sat)}$	$I_{Cnom} = 300 \text{ A}$, $V_{GE} = 15 \text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$	1,45	1,9		V
C_{ies}		1,7	2,1		
C_{oes}		18,5			nF
C_{res}	$V_{CE} = 25$, $V_{GE} = 0 \text{ V}$ $f = 1 \text{ MHz}$	1,2			nF
Q_G		0,55			nF
R_{Gint}	$T_j = \text{ }^\circ\text{C}$	2400			nC
$t_{d(on)}$		1			Ω
t_r	$R_{Gon} = 2,4 \text{ }\Omega$	150			ns
E_{on}	$I_C = 300 \text{ A}$	48			ns
$t_{d(off)}$	$R_{Goff} = 2,4 \text{ }\Omega$	7,5			mJ
t_f	$T_j = 150^\circ\text{C}$	540			ns
E_{off}	$V_{GE} = -8\text{V}/+15\text{V}$	53			ns
$R_{th(j-c)}$	per IGBT	11,5			mJ
		0,15			K/W

SEMITRANS® 3

Trench IGBT Modules

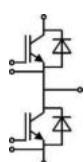
SKM 300GB066D

Symbol	Conditions	min.	typ.	max.	Units
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}$; $V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}$ chiplev.		1,4	1,6	V
V_{FO}	$T_j = 25 \text{ }^\circ\text{C}$		0,95	1	V
r_F	$T_j = 25 \text{ }^\circ\text{C}$		1,5	2	$\text{m}\Omega$
I_{RRM}	$I_F = 300 \text{ A}$	$T_j = 150 \text{ }^\circ\text{C}$	340		A
Q_{rr}	$\text{di/dt} = 7000 \text{ A/s}$		47		C
E_{rr}	$V_{GE} = -8 \text{ V}$; $V_{CC} = 300 \text{ V}$		10,5		mJ
$R_{th(j-c)D}$	per diode			0,25	K/W
Module					
L_{CE}			15	20	nH
$R_{CC' + EE'}$	res., terminal-chip $T_{case} = 25 \text{ }^\circ\text{C}$ $T_{case} = 125 \text{ }^\circ\text{C}$		0,35		$\text{m}\Omega$
$R_{th(c-s)}$	per module			0,038	K/W
M_s	to heat sink M6	3		5	Nm
M_t	to terminals M6	2,5		5	Nm
w				325	g

Features

- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_C$

Typical Applications*


- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125 \text{ }^\circ\text{C}$ max, recommended $T_{op} = -40 \dots +150 \text{ }^\circ\text{C}$
- Product reliability results are valid for $T_j \leq 150 \text{ }^\circ\text{C}$
- Short circuit data: $t_p \leq 6 \text{ s}$; $V_{GE} \leq 15 \text{ V}$; $T_j = 150 \text{ }^\circ\text{C}$; $V_{CC} \leq 360 \text{ V}$, use of soft R_G necessary!
- Take care of over-voltage caused by stray inductances

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

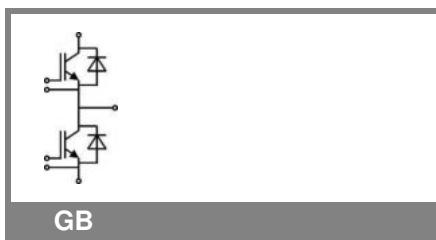
GB

Trench IGBT Modules

SKM 300GB066D

Z_{th} Symbol	Conditions	Values	Units
$Z_{th(j-c)I}$			
R_i	i = 1	107	mk/W
R_i	i = 2	30	mk/W
R_i	i = 3	11,6	mk/W
R_i	i = 4	1,4	mk/W
τ_i	i = 1	0,054	s
τ_i	i = 2	0,0144	s
τ_i	i = 3	0,0007	s
τ_i	i = 4	0,0004	s
$Z_{th(j-c)D}$			
R_i	i = 1	140	mk/W
R_i	i = 2	82	mk/W
R_i	i = 3	23,5	mk/W
R_i	i = 4	4,5	mk/W
τ_i	i = 1	0,054	s
τ_i	i = 2	0,01	s
τ_i	i = 3	0,0015	s
τ_i	i = 4	0,0002	s

Features


- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_C$

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^\circ\text{C}$ max, recommended $T_{op} = -40 \dots +150^\circ\text{C}$
- Product reliability results are valid for $T_j \leq 150^\circ\text{C}$
- Short circuit data: $t_p \leq 6 \text{ s}$; $V_{GE} \leq 15\text{V}$; $T_j = 150^\circ\text{C}$; $V_{cc} \leq 360\text{V}$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

SKM 300GB066D

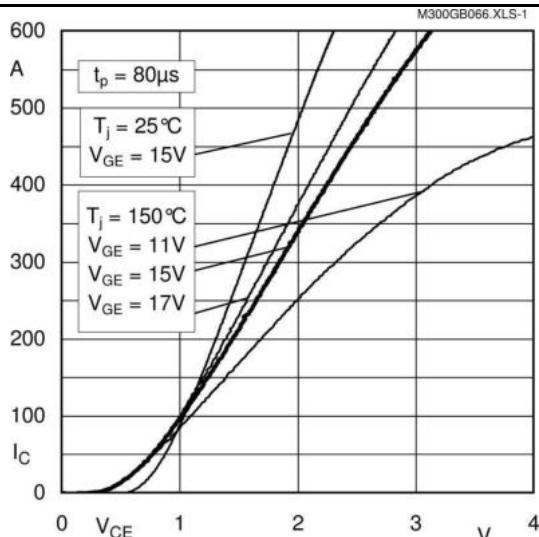


Fig. 1 Typ. output characteristic, inclusive R_{CC+EE}

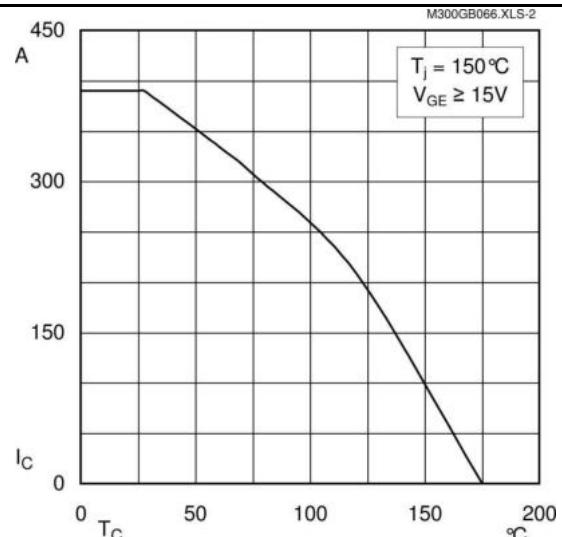


Fig. 2 Rated current vs. temperature $I_C = f(T_C)$

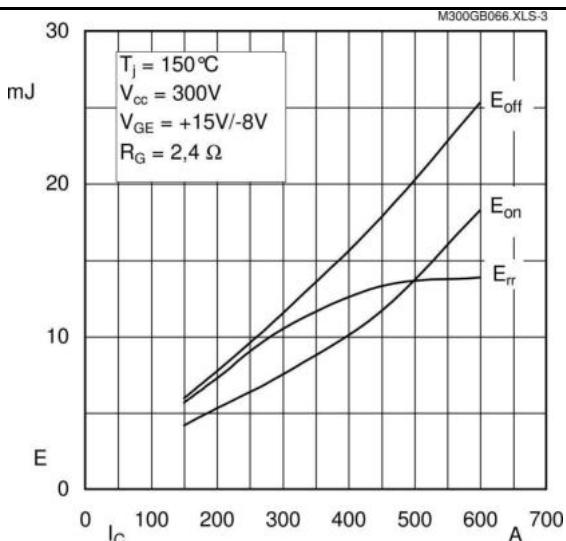


Fig. 3 Typ. turn-on /-off energy $= f(I_C)$

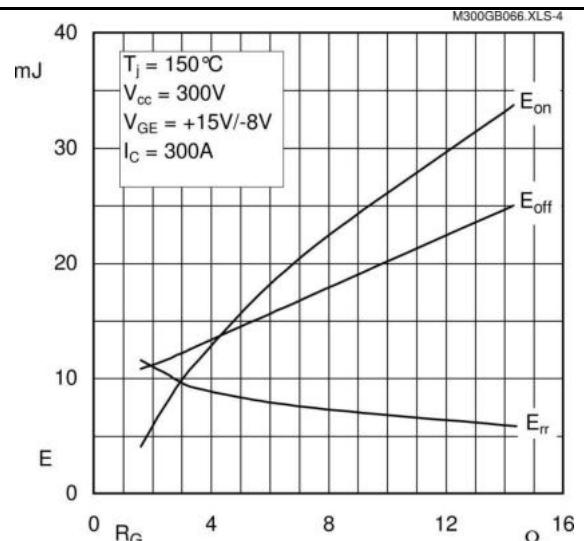


Fig. 4 Typ. turn-on /-off energy $= f(R_G)$

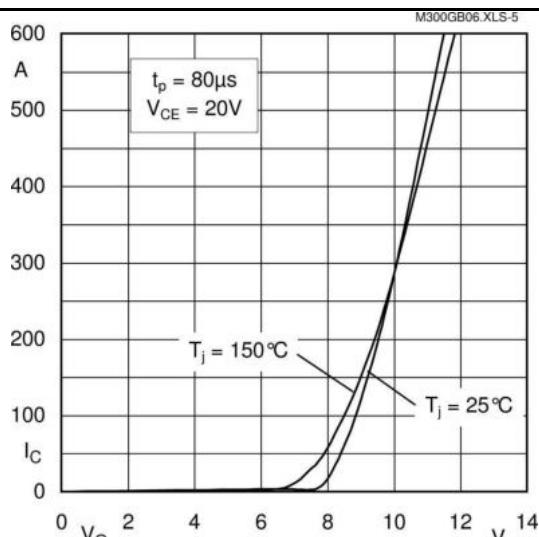


Fig. 5 Typ. transfer characteristic

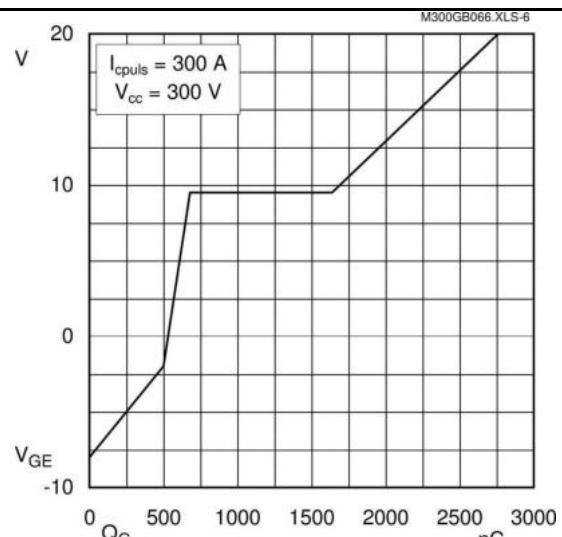


Fig. 6 Typ. gate charge characteristic

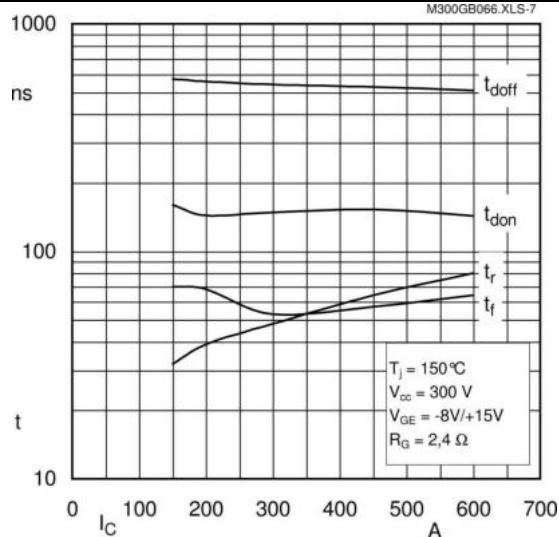


Fig. 7 Typ. switching times vs. I_C

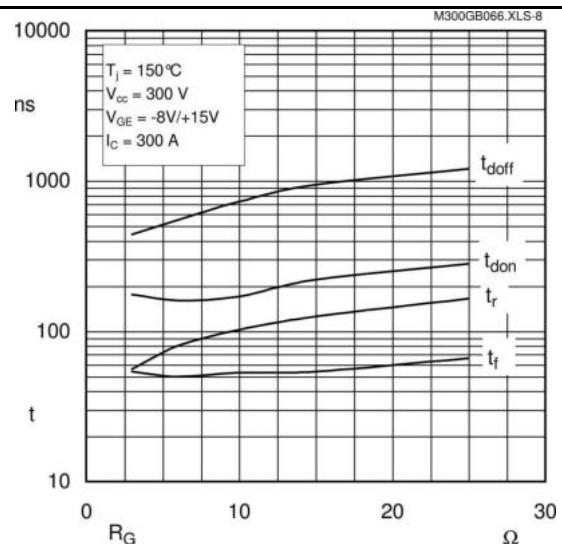


Fig. 8 Typ. switching times vs. gate resistor R_G

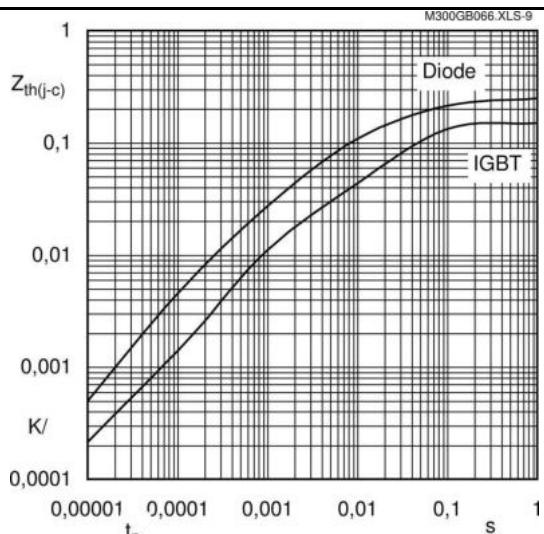


Fig. 9 Transient thermal impedance of IGBT and Diode

Fig. 10 CAL diode forward characteristic

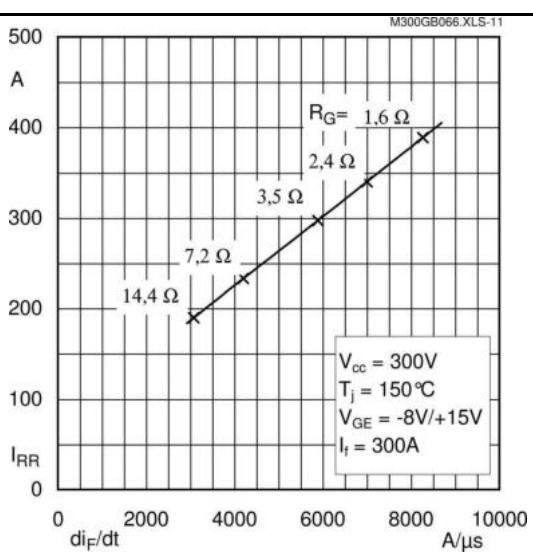


Fig. 11 Typ. CAL diode peak reverse recovery current

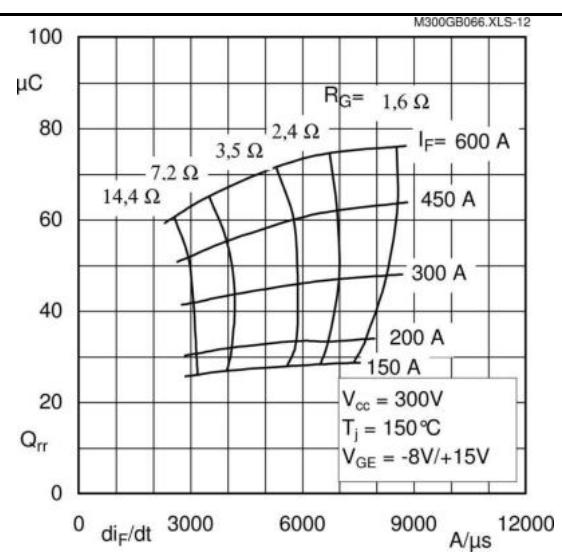
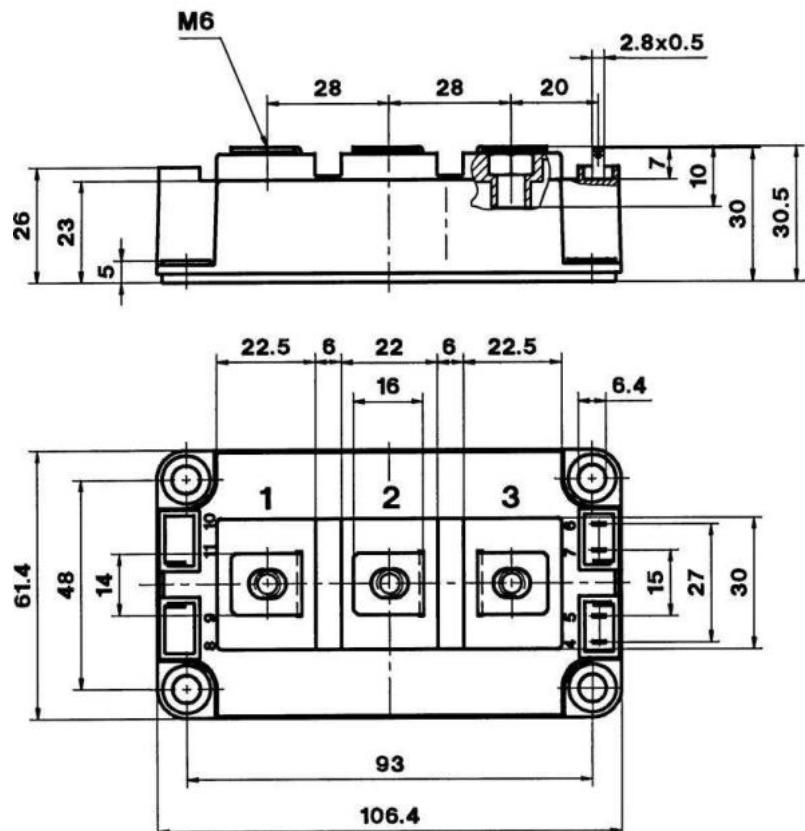
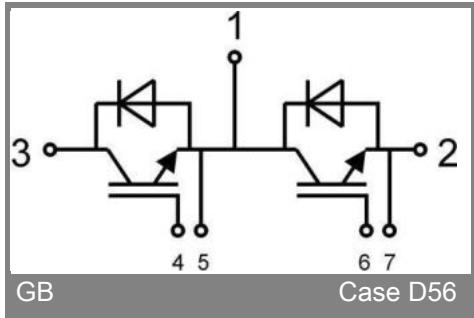



Fig. 12 CAL diode recovered charge


SKM 300GB066D

UL recognized, file no. E 63 532

CASED56

Case D 56

